Cardiopulmonary arrest and resuscitation disrupts cholinergic anti-inflammatory processes: a role for cholinergic α7 nicotinic receptors.
نویسندگان
چکیده
Cardiac arrest is a leading cause of death worldwide. While survival rates following sudden cardiac arrest remain relatively low, recent advancements in patient care have begun to increase the proportion of individuals who survive cardiac arrest. However, many of these individuals subsequently develop physiological and psychiatric conditions that likely result from ongoing neuroinflammation and neuronal death. The present study was conducted to better understand the pathophysiological effects of cardiac arrest on neuronal cell death and inflammation, and their modulation by the cholinergic system. Using a well validated model of cardiac arrest, here we show that global cerebral ischemia increases microglial activation, proinflammatory cytokine mRNA expression (interleukin-1β, interleukin-6, tumor necrosis factor-α), and neuronal damage. Cardiac arrest also induces alterations in numerous cellular components of central cholinergic signaling, including a reduction in choline acetyltransferase enzymatic activity and the number of choline acetyltransferase-positive neurons, as well as, reduced acetylcholinesterase and vesicular acetylcholine transporter mRNA. However, treatment with a selective agonist of the α7 nicotinic acetylcholine receptor, the primary receptor mediating the cholinergic anti-inflammatory pathway, significantly decreases the neuroinflammation and neuronal damage resulting from cardiac arrest. These data suggest that global cerebral ischemia results in significant declines in central cholinergic signaling, which may in turn diminish the capacity of the cholinergic anti-inflammatory pathway to control inflammation. Furthermore, we provide evidence that pharmacological activation of α7 nicotinic acetylcholine receptors provide significant protection against ischemia-related cell death and inflammation within a clinically relevant time frame.
منابع مشابه
Nicotine, an anti-inflammation molecule
Nicotine, as one of the most important components of cigarette smoke and the key contributor of initiating and maintaining tobacco dependence, has anti-inflammatory effect in the cells of both nervous system and immune system. Among the different types of subunits of nicotinic acetylcholine receptors (nAChR), α7 nAChR is related to the immune response. Nicotine exerts anti-inflammatory effect t...
متن کاملRIC-3, a potential target for regulating cholinergic signaling and inflammation
The nicotinic acetylcholine receptor (nAChR) gene family encodes for subunits of acetylcholine gated ion channels. These receptors are expressed widely and have many functions including anti-inflammatory effects mediated by the α7 nAChR, as part of the cholinergic anti-inflammatory pathway, in immune cells, microglia and astrocytes. Maturation of α7 nAChRs into functional ligand-gated ion chann...
متن کاملThe α7-nicotinic receptor is upregulated in immune cells from HIV-seropositive women: consequences to the cholinergic anti-inflammatory response
Antiretroviral therapy partially restores the immune system and markedly increases life expectancy of HIV-infected patients. However, antiretroviral therapy does not restore full health. These patients suffer from poorly understood chronic inflammation that causes a number of AIDS and non-AIDS complications. Here we show that chronic inflammation in HIV+ patients may be due to the disruption of...
متن کاملNeuregulin Upregulates Microglial α7 Nicotinic Acetylcholine Receptor Expression in Immortalized Cell Lines: Implications for Regulating Neuroinflammation
Neuregulin, previously known as ARIA, is a signaling protein involved in cell survival, synaptic plasticity, cell communication and differentiation. Neuregulin has also been described as a potent inducer of acetylcholine receptor transcription in muscle and although both neuregulin and acetylcholine have been individually described to have neuroprotective roles, their relationship in the cholin...
متن کاملThe Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells
Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer's disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 31 9 شماره
صفحات -
تاریخ انتشار 2011